One of the uses of Tigress is as an educational tool. The --Transform=RandomFuns option will generate a random function that can subsequently be transformed using any combination of Tigress obfuscations, and then given to students as a cracking target.
You can generate a program for the students to reverse engineer:
or you can generate a program for them to crack:
Depending on the sophistication of your students, you can vary the length of the transformation sequence, the difficulty of the transformations, the options to the transformations, the complexity of the generated challenge function, and either give them source to untangle (a good way to learn about particular transformations), or stripped compiled code (for a more real-world challenge).
We typically give each student 3 programs, of different levels of difficulty, to attack. Thanks to the diversity of Tigress-generated programs, each challenge is unique, making it harder for students to cheat.
Examples
Below is part of the script we use to generate take-home exams for our students. It contains two assets, a password check and an expired time check, and it's the students' job to disable these.
Start by creating this file, empty.c#include "apple.h" #include#include #include
# Generate the cleartext challenge program. This is hidden from the students. tigress --Verbosity=1 --Seed=$seed6 --Environment=x86_64:Darwin:Clang:5.1 \ --Transform=RandomFuns \ --RandomFunsName=SECRET \ --Verbosity=5 \ --RandomFunsFunctionCount=1 \ --RandomFunsTrace=0 \ --RandomFunsType=long \ --RandomFunsInputSize=1 \ --RandomFunsLocalStaticStateSize=1 \ --RandomFunsGlobalStaticStateSize=0 \ --RandomFunsLocalDynamicStateSize=0 \ --RandomFunsGlobalDynamicStateSize=0 \ --RandomFunsBoolSize=2 \ --RandomFunsLoopSize=1000 \ --RandomFunsCodeSize=100 \ --RandomFunsOutputSize=1 \ --RandomFunsTimeCheckCount=1 \ --RandomFunsActivationCodeCheckCount=1 \ --RandomFunsActivationCode=42 \ --RandomFunsPasswordCheckCount=1 \ --RandomFunsPassword=secret \ --RandomFunsFailureKind=segv \ --out=6-input.c empty.c # Generate an empty program with the same interface as the challenge program # for the students to fill out tigress --Verbosity=1 --Seed=$seed6 \ --Transform=RandomFuns --RandomFunsName=SECRET \ --RandomFunsType=long \ --RandomFunsInputSize=1 \ --RandomFunsLocalStaticStateSize=1 \ --RandomFunsGlobalStaticStateSize=0 \ --RandomFunsLocalDynamicStateSize=0 \ --RandomFunsGlobalDynamicStateSize=0 \ --RandomFunsOutputSize=1 \ --RandomFunsCodeSize=0 \ --out=6-answer.c empty.c # Obfuscate the challenge program. tigress --Verbosity=1 --Seed=$seed6 --FilePrefix=obf \ --Transform=InitEntropy \ --Functions=main\ --Transform=InitOpaque \ --Functions=main --InitOpaqueCount=1 --InitOpaqueStructs=list,array\ --Transform=InitBranchFuns \ --InitBranchFunsCount=2\ --Transform=EncodeLiterals \ --Functions=SECRET --EncodeLiteralsKinds=string --EncodeLiteralsEncoderName=STRINGS\ --Transform=Virtualize \ --Functions=STRINGS --VirtualizeDispatch=switch --VirtualizeOperands=stack,registers \ --VirtualizeMaxMergeLength=2 --VirtualizeSuperOpsRatio=1.0 \ --Transform=AddOpaque \ --Functions=SECRET --AddOpaqueKinds=call,bug,true --AddOpaqueCount=4\ --Transform=Virtualize \ --Functions=SECRET --VirtualizeDispatch=indirect --VirtualizeOperands=stack,registers \ --VirtualizeMaxMergeLength=2 --VirtualizeSuperOpsRatio=1.0 \ --Transform=Virtualize \ --Functions=SECRET --VirtualizeDispatch=ifnest --VirtualizeOperands=stack,registers \ --VirtualizeMaxMergeLength=2 --VirtualizeSuperOpsRatio=1.0 --VirtualizeNumberOfBogusFuns=1\ --Transform=EncodeLiterals \ --Functions=SECRET --EncodeLiteralsKinds=integer \ --Transform=BranchFuns \ --Functions=SECRET --BranchFunsFlatten=true \ --Transform=CleanUp \ --CleanUpKinds=annotations,constants,names \ --out=6-challenge.c 6-input.c
Structure of Random Programs
To fulfill our needs, a random program generator must have certain characteristics:
- in order to make it easy for reverse engineers to automate attacks, the generated programs must a have simple I/O behavior;
- the generator must be able to produce an "infinite" sequence of different programs;
- generated programs should be small, but still have an "interesting" internal structure;
- generate programs should always terminate;
- generate programs should terminate within a reasonable timebound;
- an adversary should not be able to guess the internals of a generated program by examining its input-output behavior;
- generated programs should be "minimal," i.e. there should not be a smaller program that has the same I/O behavior (this is so that it is obvious to the reverse engineer when he has found the correct program).
The generated challenge programs all take the following simple form:
#include ≤stdio.h> #include ≤stdlib.h> void SECRET(unsigned long input[1] , unsigned long output[1] ) ... } int main(int argc, char** argv) { { unsigned long input[1] ; unsigned long output[1] ; int i5 ; unsigned long value6 ; int i7 ; } i5 = 0; while (i5 < 1) { value6 = strtoul(argv[i5 + 1], 0, 10); input[i5] = value6; i5 ++; } SECRET(input, output); i7 = 0; while (i7 < 1) { printf("%lu\n", output[i7]); i7 ++; } }
That is, a challenge program reads one or more longs from standard in, and produces one or more longs on standard out.
Internally, generated SECRET functions share the same basic structure: an expansion phase, a mixing phase, and a compression phase:
- The expansion phase expands the input arguments into a (typically larger) state space. It is currently a sequence of assignment statements.
- The mixing phase perform operations on the state space. This is where we add control structures.
- The Compression phase compresses the state into the (typically smaller) output. It is currently a sequence of assignment statements.
void SECRET(unsigned long input[1] , unsigned long output[1] ) { unsigned long state[4] ; unsigned long local1 ; /* Expansion phase */ state[0UL] = input[0UL] + 762537946UL; state[1UL] = input[0UL] | ((16601096UL << (state[0UL] % 16UL | 1UL)) | (16601096UL >> (64 - (state[0UL] % 16UL | 1UL)))); state[2UL] = (input[0UL] ^ 643136481UL) ^ (state[0UL] + 292656718UL); state[3UL] = (input[0UL] << (((state[1UL] >> 4UL) & 15UL) | 1UL)) | (input[0UL] >> (64 - (((state[1UL] >> 4UL) & 15UL) | 1UL))); /* Mixing phase */ local1 = 0UL; while (local1 < 3UL) { state[1UL] |= (state[2UL] & 15UL) << 3UL; state[local1 + 1UL] = state[local1]; local1 += 2UL; } if ((state[0UL] | state[1UL]) > (state[2UL] | state[3UL])) { state[3UL] |= (state[1UL] & 31UL) << 3UL; } else { state[2UL] = state[0UL]; state[3UL] |= (state[2UL] & 15UL) << 3UL; } state[0UL] = state[2UL]; /* Compression phase */ output[0UL] = (state[0UL] << (state[1UL] % 8UL | 1UL)) << ((((state[2UL] << (state[3UL] % 8UL | 1UL)) >> 1UL) & 7UL) | 1UL); }
Options
Option | Arguments | Description |
---|---|---|
--Transform | RandomFuns | Generate a random function useful as an attack target. |
--RandomFunsFunctionFunctionCount | INTSPEC | Number of functions to generate. Default=1. |
--RandomFunsTrace | INTSPEC | Insert tracing in the generated program. 0=no tracing. 1=trace function entry and exit. 2=as 1, but also trace control points. 3=as 2, but also trace individual statements. 4=as 3, but also trace the values of the STATE variable at each statement. Default=0. |
--RandomFunsInputSize | INTSPEC | Size of input. Default=1. |
--RandomFunsLocalStaticStateSize | INTSPEC | Size of function-local static state. Default=1. |
--RandomFunsLocalDynamicStateSize | INTSPEC | Size of function-local dynamic state, i.e. the number of linked structures (lists, trees, etc) that can be built. Default=0. |
--RandomFunsGlobalStaticStateSize | INTSPEC | Size of global static state. Default=0. |
--RandomFunsGlobalDynamicStateSize | INTSPEC | Size of global dynamic state, i.e. the number of linked structures (lists, trees, etc) that can be built. Default=0. |
--RandomFunsOutputSize | INTSPEC | Size of output. Default=1. |
--RandomFunsCodeSize | INTSPEC | Size of the generated code. This is the number of nodes in generated Abstract Syntax Tree. Default=10. |
--RandomFunsLoopSize | INTSPEC | Maximum count of loop iterations. Used to control the length of execution. Default=None. |
--RandomFunsBoolSize | INTSPEC | Size of boolean expressions, specifically the number of conjunctions and disjunctions (&& and ||) that are used to build up expressions. Default=1. |
--RandomFunsType | char, short, int, long, float, double | Type of input/output/state. Default=long.
|
--RandomFunsName | string | The name of the generated function. |
--RandomFunsFailureKind | message, abort, segv | The manner in which a triggered asset may fail. Comma-separated list. Default=segv.
|
--RandomFunsInputKind | argv, stdin | How inputs are read by the program, through the command line or stdin. Default=argv.
|
--RandomFunsDummyFailure | BOOLSPEC | Generates excatly the same code whether true or false, except the failure code is rendered impotent. In other words, --RandomFunsDummyFailure=true will have the failure code inserted, but inactive. Default=false. |
--RandomFunsActivationCode | int | The code the user has to enter (as the first command line arguments) to be allowed to run the program. Default=42. |
--RandomFunsPassword | string | The password the user has to enter (read from standar input) to be allowed to run the program. Default="42". |
--RandomFunsTimeCheckCount | int | The number of checks for expired time (gettimeofday() > someTimeInThePast) to be inserted in the program. Default=0. |
--RandomFunsActivationCodeCheckCount | int | The number of checks for correct activation code to be inserted in the program. Default=0. |
--RandomFunsPasswordCheckCount | int | The number of checks for correct password to be inserted in the program. Probably only 0 and 1 make sense here, since the user will be prompted for a password once for every check. Default=0. |
--RandomFunsControlStructures | S-Expression | If set, will define the nested control structures of the generated function. Otherwise, a random structure will be generated. The argument is an S-Expression, where each subexpression has one of the forms (bb INTSPEC) (for a basic block consisting of a certain number of assignment statements), (for S-expression) (for a for-loop with a given body), or (if S-expression S-expression) (for an if-statement with a given then and else part), or (switch S-expression S-expression) (for a switch-statement with a given list of cases and a default case). For example, --RandomFunsControlStructures='(for ((bb 4)))' will generate a body consisting of a for-loop with 4 assignment statements in the body. (for ((bb 4) (if ((bb 1)) ((bb 2))))) also puts an if-statement inside the loop. (for ((bb 4) (if ((bb 1)) ((for (bb 2)))))) puts a for-loop inside the else-part of the if-statement. (switch ((bb 4) (if ((bb 1)))) (bb 4)) creates a switch-statment with two cases (a basic block and an if-statement), and a basic block as the default case,. Default=none. |
--RandomFunsBasicBlockSize | INTSPEC | The size of basic blocks, when control structures are not explicitly specified using RandomFunsControlStructures. Default=3. |
--RandomFunsForBound | constant, input, boundedInput, boundedAny | The allowable upper bound in a for-statement. Comma-separated list. Default=constant.
|
--RandomFunsOperators | PlusA, MinusA, Mult, Div, Mod, Shiftlt, Shiftrt, Lt, Gt, Le, Ge, Eq, Ne, BAnd, BXor, BOr, * | The allowable operators in expressions. Comma-separated list. Default=all.
|
--RandomFunsPointTest | BOOL | Add if (output[0] == 4242424242U) printf("You win!\n"); after the call to the generated function. The idea is to replace (by hand) 4242424242U with one actual output of the function. This can be used as another reverse engineering challenge: "Find an input for which the program prints "You win!. Default=false. |
Issues
- Generating random functions is actually a really cool research problem! Generating a program that always terminates, finishes within a reasonable time, looks vaguely normal (i.e. could possibly have been written by a human), and has a unique and unpredicatable I/O behavior (i.e. the code can't be derived from blackbox access), is decidedly non-trival.
- A good solution to this problem should be worthy of at least a master's thesis, for sure! Email me! (:
- This implementation doesn't achieve any of the stated goals. In particular, it's hard to ensure that all programs generated from the same script runs in a reasonable time.
- Various options can be used to tweak the runtime, in particular --RandomFunsLoopSize=1000 which bounds the number of loop iterations.
- If you're willing to set the control structures yourself using --RandomFunsControlStructures="(if (bb 5) (bb 2))", then the problem goes away. When these are generated automatically, however, there's always some risk that you'll wind up with --RandomFunsControlStructures="(for (for (for (for (bb 4)))))" which is likely to run forever. I try to mitigate this by reducing the loop size (set by --RandomFunsLoopSize=1000) by a factor of 10 for every nesting level, but this doesn't help if looping is interprocedural (I don't currently check for this).
- The random call graphs are actually just trees. They should be DAGs, at least.
References
Random function generation is described in Predicting the Resilience of Obfuscated Code Against Symbolic Execution Attacks via Machine Learning by Sebastian Banescu, Christian Collberg, and Alexander Pretschner, USENIX Security 2017.